II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

MECHANICS OF SOLIDS (CIVIL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	Define Thermal stress and discuss the thermal	L1	CO1	7 M		
		stresses in composite bar in series.					
	b)	A steel circular bar has three segments as shown	L3	CO1	7 M		
		in Fig.1. Determine i) the total elongation of the					
		bar. ii) The length of the middle segment to have					
		zero elongation. Take E= 200 GPa.					
		A = B = C = D $15 mm = 300 kN = 330 kN = 20 mm = 80 kN$ $A = B = C = D$					
		Fig.1					
OR							
2	a)	Define Bulk modulus and develop the expression	L1	CO1	7 M		
		for the relation between Bulk and Young's					
		moduli.					
	b)	A steel bar 35 mm x 35 mm in section and 100	L3	CO1	7 M		

Max. Marks: 70

		mm long is acted upon by a tensile load of 180						
		kN along it's longitudinal axis and 400 kN and						
		300 kN along the axes of the lateral surfaces.						
		Determine i) Change in the dimensions of the bar						
		and ii) Change in volume. Take $E = 2 \times 10^5$						
		N/mm ²						
UNIT-II								
3	a)	A 8 m simply supported beam is carrying a	L3	CO2	7 M			
		central point load of 1 kN. Sketch the bending						
		moment diagram.						
	b)	Draw SF and BM diagrams for a cantilever beam	L4	CO2	7 M			
		of length L, carrying uniformly varying load zero						
		at free end and w per unit length at fixed						
		support.						
	I	OR	1	I				
4	a)	Define point of inflection. Is there point of	L1	CO2	7 M			
		inflection in a cantilever beam subjected to point						
		load at center?						
	b)	A beam of 10 m length is simply-supported at	L3	CO2	7 M			
		its ends. It carries uniformly distributed load of						
		20 kN/m run over the length of left half of its						
		span, together with concentrated load of 20 kN						
		situated at center. Draw shear force and bending						
		moment diagrams for this beam indicating values						
		at the salient points.						
UNIT-III								
5	a)	In a piece of material, a tensile stress, $\boldsymbol{\sigma}$ and	L4	CO3	7 M			
		shearing stress q act on a given plane. Show that						
		the principal stresses are always of opposite sign.						
	b)	At a point in a material, there are normal stresses	L3	CO3	7 M			
		of 30 N/mm ² and 60 N/mm ² both tensile together						

	1		1		
		with a shearing stress of 22.5 N/mm ² . Find the			
		values of principal stresses and inclination of			
		principal planes to the direction of the 60 N/mm ²			
		stress.			
		OR	1	1	
6	a)	Derive an expression for normal and tangential	L4	CO3	7 M
		stresses on a diagonal plane of a material			
		subjected to pure shear.			
	b)	A straight bar of uniform cross-section is loaded	L3	CO3	7 M
		in axial tension. Determine the normal and			
		shearing stress on a plane inclined at an angle θ°			
		to the axis of the bar. Also, determine the			
		magnitude and direction of the maximum			
		shearing stress in the bar.			
		UNIT-IV			
7	A	beam is having a T-shaped cross section with	L3	CO4	14
	flar	nge width 125 mm, flange thickness 25 mm, depth			Μ
	of	web 175 mm and thickness of web 25 mm. If a			
	ben	ding moment of 2.5 kN-m is acting at the section,			
		w the bending stress distribution.			
		OR			
8	Α	symmetrical T section (Fig.2) made with two	L5	CO4	14
		tangular planks of size 200 mm x 20 mm is			Μ
	subjected to a vertical shear force of 100 kN				
	Calculate shear stress at important points and dray				
	shear stress distribution diagram. (All dimensions in				
	mn				

